28 research outputs found

    InteracciĂłn con la MĂșsica Flamenca: AnĂĄlisis y GeneraciĂłn

    Get PDF
    One main concern in Europe is the preservation and promotion of cultural heritage. Music is a main component of such heritage and flamenco is a main part of Andalusian musical culture. Focusing on flamenco music, in this paper, we describe steps on the analysis and generation of flamenco music oriented towards the diffusion and promotion of this musical style. Specifically, the separation of meaningful musical audio elements from flamenco excerpts by means of the scheme that will be described provides a novel an interactive way of listening to flamenco music by enabling the user to select or emphasize audio elements at will. Also, the scheme for the interactive generation of flamenco music that will be presented allows the user to play and interact with flamenco music by means of a user friendly interface implemented for iOS devices.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech. Ese trabajo ha sido parcialmente financiado por Campus de Excelencia Internacional en Patrimonio, PATRIMONIUN-10, para programas de generación de investigación de referencia internacional en materia de Patrimonio Cultural y Natural, convocatoria realizada en el åmbito del proyecto PATRIMONIUN-10, Jaén, Marzo de 2014, y por el Ministerio de Economía y Competitividad del Gobierno de España, Proyecto TIN2013-47276-C6-2-R

    Vibrio vulnificus mutation rate: an in vitro approach

    Get PDF
    Vibrio vulnificus is a multi-host pathogenic species currently subdivided into five phylogenetic lineages (L) plus one pathovar with the ability to infect fish due to a transmissible virulence plasmid. This plasmid (or a fragment of it) has been transmitted between lineages within the species, contributing to the evolution of V. vulnificus. This study aimed to provide an experimental approximation to the V. vulnificus mutation rate by determining spontaneous mutation rates from bacterial cultures of representants of the different lineages by whole-genome sequencing. To this purpose, synonymous SNP differences, i.e., spontaneous mutation not subjected to the evolutive forces, between initial and final culture after serial growth were evaluated and used for mutation rate calculation

    Correlation between biological responses in vitro and in vivo to Ca-doped sol-gel coatings assessed using proteomic analysis

    Get PDF
    Poor correlation between the results of in vitro testing and the subsequent in vivo experiments hinders the design of biomaterials. Thus, new characterisation methods are needed. This study used proteomic and histological techniques to analyse the effects of Ca-doped biomaterials in vitro and in vivo and verify the correlation between the two systems. The sol-gel route was employed to synthesise coatings functionalised with 0.5 and 5 wt% of CaCl2. Morphology of the coatings was examined using SEM; the Ca2+ ion release from the materials was analysed by means of ICP-AES spectroscopy. The osteogenic and inflammatory responses were inspected in vitro in human osteoblasts (HOb) and TPH-1 monocytes. The in vivo experiments used a rabbit model. The nLC-MS/MS-based proteomic methods were utilised to analyse the proteins adhering to the material samples incubated with human serum or examine protein expression in the tissues close to the implants. Ca-doped biomaterials caused a remarkable increase in the adsorption of coagulation-related proteins, both in vitro (PLMN, THRB, FIBA and VTNC) and in vivo (FBLN1, G1U978). Enhanced affinity to these materials was also observed for proteins involved in inflammation (CO5, C4BPA, IGHM and KV302 in vitro; CARD6, DDOST and CD14 in vivo) and osteogenic functions (TETN, PEDF in vitro; FBN1, AHSG, MYOC in vivo). The results obtained using different techniques were well matched, with a good correlation between the in vitro and in vivo experiments. Thus, the proteomic analysis of biological responses to biomaterials in vitro is a useful tool for predicting their impact in vivo

    Application of Multi-core and GPU Architectures on Signal Processing: Case Studies

    Get PDF
    In this article part of the techniques and developments we are carrying out within the INCO2 group are reported. Results follow the interdisciplinary approach with which we tackle signal processing applications. Chosen case studies show different stages of development: We present algorithms already completed which are being used in practical applications as well as new ideas that may represent a starting point, and which are expected to deliver good results in a short and medium term

    Client Applications and Server-Side Docker for Management of RNASeq and/or VariantSeq Workflows and Pipelines of the GPRO Suite

    Get PDF
    The GPRO suite is an in-progress bioinformatic project for -omics data analysis. As part of the continued growth of this project, we introduce a client- and server-side solution for comparative transcriptomics and analysis of variants. The client-side consists of two Java applications called 'RNASeq' and 'VariantSeq' to manage pipelines and workflows based on the most common command line interface tools for RNA-seq and Variant-seq analysis, respectively. As such, 'RNASeq' and 'VariantSeq' are coupled with a Linux server infrastructure (named GPRO Server-Side) that hosts all dependencies of each application (scripts, databases, and command line interface software). Implementation of the Server-Side requires a Linux operating system, PHP, SQL, Python, bash scripting, and third-party software. The GPRO Server-Side can be installed, via a Docker container, in the user's PC under any operating system or on remote servers, as a cloud solution. 'RNASeq' and 'VariantSeq' are both available as desktop (RCP compilation) and web (RAP compilation) applications. Each application has two execution modes: a step-by-step mode enables each step of the workflow to be executed independently, and a pipeline mode allows all steps to be run sequentially. 'RNASeq' and 'VariantSeq' also feature an experimental, online support system called GENIE that consists of a virtual (chatbot) assistant and a pipeline jobs panel coupled with an expert system. The chatbot can troubleshoot issues with the usage of each tool, the pipeline jobs panel provides information about the status of each computational job executed in the GPRO Server-Side, while the expert system provides the user with a potential recommendation to identify or fix failed analyses. Our solution is a ready-to-use topic specific platform that combines the user-friendliness, robustness, and security of desktop software, with the efficiency of cloud/web applications to manage pipelines and workflows based on command line interface software

    Client applications and Server Side docker for management of RNASeq and/or VariantSeq workflows and pipelines of the GPRO Suite

    Get PDF
    The GPRO suite is an in-progress bioinformatic project for -omic data analyses. As part of the continued growth of this project, we introduce a client side & server side solution for comparative transcriptomics and analysis of variants. The client side consists of two Java applications called "RNASeq" and "VariantSeq" to manage workflows for RNA-seq and Variant-seq analysis, respectively, based on the most common command line interface tools for each topic. Both applications are coupled with a Linux server infrastructure (named GPRO Server Side) that hosts all dependencies of each application (scripts, databases, and command line interface tools). Implementation of the server side requires a Linux operating system, PHP, SQL, Python, bash scripting, and third-party software. The GPRO Server Side can be deployed via a Docker container that can be installed in the user's PC using any operating system or on remote servers as a cloud solution. The two applications are available as desktop and cloud applications and provide two execution modes: a Step-by-Step mode enables each step of a workflow to be executed independently and a Pipeline mode allows all steps to be run sequentially. The two applications also feature an experimental support system called GENIE that consists of a virtual chatbot/assistant and a pipeline jobs panel coupled with an expert system. The chatbot can troubleshoot issues with the usage of each tool, the pipeline job panel provides information about the status of each task executed in the GPRO Server Side, and the expert provides the user with a potential recommendation to identify or fix failed analyses. The two applications and the GPRO Server Side combine the user-friendliness and security of client software with the efficiency of front-end & back-end solutions to manage command line interface software for RNA-seq and variant-seq analysis via interface environments

    Correlation between clinical parameters characterising peri-implant and periodontal health : a practice-based research in Spain in a series of patients with implants installed 4-5 years ago

    Get PDF
    Objectives: To explore peri-implant health (and relation with periodontal status) 4-5 years after implant insertion. Study D esign: A practice-based dental research network multicentre study was performed in 11 Spanish centres. The first patient/month with implant insertion in 2004 was considered. Per patient four teeth (one per quadrant) showing the highest bone loss in the 2004 panoramic X-ray were selected for periodontal status assessment. Bone losses in implants were calculated as the differences between 2004 and 2009 bone levels in radiographs. Results: A total of 117 patients were included. Of the 408 teeth considered, 73 (17.9%) were lost in 2009 (losing risk: >50% for bone losses ?7mm). A total of 295 implants were reviewed. Eight of 117 (6.8%) patients had lost implants (13 of 295 implants installed; 4.4%). Implant loss rate (quadrant status) was 1.4% (edentulous), 3.6% (preserved teeth), and 11.1% (lost teeth) (p=0.037). The percentage of implant loss significantly (p<0.001) increased when the medial/distal bone loss was ?3 mm. The highest (p?0.001) pocket depths were found in teeth with ?5mm and implants with ?3mm bone losses, with similar mean values (?4mm), associated with higher rates of plaque index and bleeding by probing. Conclusions: The significant bi-directional relation between plaque and bone loss, and between each of these two parameters/signs and pocket depths or bleeding (both in teeth and implants, and between them) together with the higher percentage of implants lost when the bone loss of the associated teeth was ?3 mm suggest that the patient?s periodontal status is a critical issue in predicting implant health/lesion

    A Neutrophil Timer Coordinates Immune Defense and Vascular Protection

    Get PDF
    Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.We thank all members of the Hidalgo Lab for discussion and insightful comments; J.M. Ligos, R. Nieto, and M. Viton for help with sorting and cytometric analyses; I. Ortega and E. Santos for animal husbandry; D. Rico, M.J. Gomez, C. Torroja, and F. Sanchez-Cabo for insightful comments and help with transcriptomic analyses; V. Labrador, E. Arza, A.M. Santos, and the Microscopy Unit of the CNIC for help with microscopy; S. Aznar-Benitah, U. Albrecht, Q.-J. Meng, B. Staels, and H. Duez for the generous gift of mice; J.A. Enriquez and J. Avila for scientific insights; and J.M. Garcia and A. Diez de la Cortina for art. This study was supported by Intramural grants from A* STAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de Economia, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).S

    Association Between Preexisting Versus Newly Identified Atrial Fibrillation and Outcomes of Patients With Acute Pulmonary Embolism

    Get PDF
    Background Atrial fibrillation (AF) may exist before or occur early in the course of pulmonary embolism (PE). We determined the PE outcomes based on the presence and timing of AF. Methods and Results Using the data from a multicenter PE registry, we identified 3 groups: (1) those with preexisting AF, (2) patients with new AF within 2 days from acute PE (incident AF), and (3) patients without AF. We assessed the 90-day and 1-year risk of mortality and stroke in patients with AF, compared with those without AF (reference group). Among 16 497 patients with PE, 792 had preexisting AF. These patients had increased odds of 90-day all-cause (odds ratio [OR], 2.81; 95% CI, 2.33-3.38) and PE-related mortality (OR, 2.38; 95% CI, 1.37-4.14) and increased 1-year hazard for ischemic stroke (hazard ratio, 5.48; 95% CI, 3.10-9.69) compared with those without AF. After multivariable adjustment, preexisting AF was associated with significantly increased odds of all-cause mortality (OR, 1.91; 95% CI, 1.57-2.32) but not PE-related mortality (OR, 1.50; 95% CI, 0.85-2.66). Among 16 497 patients with PE, 445 developed new incident AF within 2 days of acute PE. Incident AF was associated with increased odds of 90-day all-cause (OR, 2.28; 95% CI, 1.75-2.97) and PE-related (OR, 3.64; 95% CI, 2.01-6.59) mortality but not stroke. Findings were similar in multivariable analyses. Conclusions In patients with acute symptomatic PE, both preexisting AF and incident AF predict adverse clinical outcomes. The type of adverse outcomes may differ depending on the timing of AF onset.info:eu-repo/semantics/publishedVersio

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    corecore